10 research outputs found

    Wireless wake-up sensor network for structural health monitoring of large-scale highway bridges

    Get PDF
    To realize in-situ structural health monitoring of critical infrastructure such as bridges, we present a powerful, but also low power and flexible, wireless sensor node utilizing a wake-up transceiver. The sensor node is equipped with several kinds of sensors, such as temperature, pressure and acceleration for in-situ monitoring of critical infrastructure. In addition to these commonly used sensors in wireless sensor networks, some nodes are equipped with global navigation satellite system receivers (GNSS) and others with tilt and acceleration sensors of very high accuracy that were developed by Nothrop Grumman LITEF GmbH. We present a low power wakeup multi-hop routing protocol that is able to transmit data with little overhead by supporting the use of wake-up receivers in combination with long-range communication radios. The wireless sensor nodes and the routing protocol are tested at a large-scale highway bridge in south-west Germany, where a prototype network was installed in June 2015 following a first test installation earlier in June at the same bridge. A gateway node equipped with a Global System for Mobile Communications (GSM) modem transfers the network data to a remote server located at the University of Freiburg

    Accelerating the laser-induced demagnetization of a ferromagnetic film by antiferromagnetic order in an adjacent layer

    Get PDF
    We study the ultrafast demagnetization of Ni/NiMn and Co/NiMn ferromagnetic/antiferromagnetic bilayer systems after excitation by a laser pulse. We probe the ferromagnetic order of Ni and Co using magnetic circular dichroism in time-resolved pump-probe resonant x-ray reflectivity. Tuning the sample temperature across the antiferromagnetic ordering temperature of the NiMn layer allows us to investigate effects induced by the magnetic order of the latter. The presence of antiferromagnetic order in NiMn speeds up the demagnetization of the ferromagnetic layer, which is attributed to bidirectional laser-induced superdiffusive spin currents between the ferromagnetic and the antiferromagnetic layer

    Adaptable bioinspired special wetting surface for multifunctional oil/water separation

    Get PDF
    Inspired by the multifunctionality of biological surfaces necessary for the survival of an organism in its specific environment, we developed an artificial special wetting nanofur surface which can be adapted to perform different functionalities necessary to efficiently separate oil and water for cleaning accidental oil spills or separating industrial oily wastewater. Initial superhydrophobic nanofur surface is fabricated using a hot pulling method, in which nano- and microhairs are drawn out of the polymer surface during separation from a heated sandblasted steel plate. By using a set of simple modification techniques, which include microperforation, plasma treatment and subsequent control of storage environment, we achieved selective separation of either water or oil, variable oil absorption and continuous gravity driven separation of oil/water mixtures by filtration. Furthermore, these functions can be performed using special wetting nanofur made from various thermoplastics, including biodegradable and recyclable polymers. Additionally, nanofur can be reused after washing it with organic solvents, thus, further helping to reduce the environmental impacts of oil/water separation processes

    Collaborative Broadcast in O(log log n) Rounds

    Full text link
    We consider the multihop broadcasting problem for nn nodes placed uniformly at random in a disk and investigate the number of hops required to transmit a signal from the central node to all other nodes under three communication models: Unit-Disk-Graph (UDG), Signal-to-Noise-Ratio (SNR), and the wave superposition model of multiple input/multiple output (MIMO). In the MIMO model, informed nodes cooperate to produce a stronger superposed signal. We do not consider the problem of transmitting a full message nor do we consider interference. In each round, the informed senders try to deliver to other nodes the required signal strength such that the received signal can be distinguished from the noise. We assume sufficiently high node density ρ=Ω(logn)\rho= \Omega(\log n). In the unit-disk graph model, broadcasting needs O(n/ρ)O(\sqrt{n/\rho}) rounds. In the other models, we use an Expanding Disk Broadcasting Algorithm, where in a round only triggered nodes within a certain distance from the initiator node contribute to the broadcasting operation. This algorithm achieves a broadcast in only O(lognlogρ)O(\frac{\log n}{\log \rho}) rounds in the SNR-model. Adapted to the MIMO model, it broadcasts within O(loglognloglogρ)O(\log \log n - \log \log \rho) rounds. All bounds are asymptotically tight and hold with high probability, i.e. 1nO(1)1- n^{-O(1)}.Comment: extended abstract accepted for ALGOSENSORS 201
    corecore